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ABSTRACT

An object-based probabilistic (OBPROB) forecasting framework is developed and applied, together with a

more traditional neighborhood-based framework, to convection-permitting ensemble forecasts produced by

the University of Oklahoma (OU) Multiscale data Assimilation and Predictability (MAP) laboratory during

the 2017 and 2018 NOAA Hazardous Weather Testbed Spring Forecasting Experiments. Case studies from

2017 are used for parameter tuning and demonstration of methodology, while the 2018 ensemble forecasts are

systematically verified. The 2017 case study demonstrates that the OBPROB forecast product can provide a

unique tool to operational forecasters that includes convective-scale details such as storm mode and mor-

phology, which are typically lost in neighborhood-basedmethods, while also providing quantitative ensemble

probabilistic guidance about those details in a more easily interpretable format than themore commonly used

paintball plots. The case study also demonstrates that objective verification metrics reveal different relative

performance of the ensemble at different forecast lead times depending on the verification framework

(i.e., object versus neighborhood) because of the different features emphasized by object- and neighborhood-

based evaluations. Both frameworks are then used for a systematic evaluation of 26 forecasts from the spring

of 2018. The OBPROB forecast verification as configured in this study shows less sensitivity to forecast lead

time than the neighborhood forecasts. Both frameworks indicate a need for probabilistic calibration to im-

prove ensemble reliability. However, lower ensemble discrimination for OBPROB than the neighborhood-

based forecasts is also noted.

1. Introduction

The forecast problem that convection-allowing model

(CAM) ensembles are uniquely suited to address is

the determination of convective-scale details of the

approximate initiation location, convective mode, and

degree of upscale organization of specific convective

systems. Such information can allow forecasters to

anticipate the transition from a primary threat of tornado

and very large hail associated with discrete supercells to a

primary threat of organized straight-line winds and flash

flooding that are more characteristic of mesoscale con-

vective systems. Storm mode and upscale organization

are difficult to infer from neighborhood-based products

and therefore often require manual evaluation of the

convective systems in each individual ensemble mem-

ber. Even then, it may not be obvious to the fore-

caster how to quantify the relevant forecast probabilitiesCorresponding author: Dr. Aaron Johnson, ajohns14@ou.edu
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implied by the ensemble. For similar reasons, the

objective verification of CAM ensembles can also be

challenging.

Traditional gridpoint-based and neighborhood-based

verification methods can provide only a partial evalua-

tion of the quality of CAM forecasts from an operational

severe weather forecasting perspective (e.g., Skinner

et al. 2018). Gridpoint-based metrics are highly sensitive

to small spatial displacements of high amplitude features

such as convective storms, even when such displace-

ments are not relevant for the end user of the CAM

forecast (Baldwin et al. 2001; Gilleland et al. 2009;

Johnson et al. 2011a). Neighborhood methods (e.g.,

Ebert 2008) can alleviate this problem by eliminating

the sensitivity to spatial displacement errors, but this can

also smooth out much of the convective-scale detail that

is generally assumed to be unpredictable. However, in-

formation about convective-scale details of storm mor-

phology and convective organization, which can be

influenced by the more predictable larger scales (Lilly

1990), are often specifically what the forecaster aims

to obtain from the CAM. In contrast, object-based

methods have been acknowledged in several past stud-

ies as one effective way to retain information about

storm morphology and organization while objectively

quantifying forecast attributes of interest in a way that

mimics a subjective expert evaluation (e.g., Davis et al.

2006a,b, 2009; Johnson et al. 2011a,b, 2013; Wolff et al.

2014; Clark et al. 2014; Stratman and Brewster 2017).

These studies were applied in the context of determin-

istic CAM forecasts.

The object-based framework has also been applied in

the context of ensemble forecasts, treating each en-

semble member as a deterministic forecast to be evalu-

ated individually (Clark et al. 2012a; Johnson andWang

2013; Pinto et al. 2015; Bytheway and Kummerow 2015;

Skinner et al. 2016; Schwartz et al. 2017). One of the

main motivations for ensemble forecasting is the abil-

ity to predict the uncertainty of the forecast, which

requires a probabilistic approach to forecast evaluation.

However, there have been only a few limited studies of

object-based verification in a probabilistic context. For

example, probability fields were used to define objects in

both Gallus (2010) and Schwartz et al. (2017), but in a

way that loses convective-scale morphology details be-

cause of calculating (neighborhood) probability first,

before identifying the objects. Skinner et al. (2016) also

used object-based methods in the context of ensem-

ble probabilistic verification but focused on spatial

probabilities of matched objects rather than forecasting

the probability that an object will bematched. Ensemble

forecasts have also been evaluated in a features-based

framework that partitions skill into the structure,

amplitude and location of convective features with

each component error averaged over the ensemble,

rather than evaluating probabilistic forecasts directly

(Radanovics et al. 2018). Also of note, object-based

probabilities were used outside of the ensemble fore-

casting context in Karstens et al. (2018), using radar-

based nowcasting at short lead times.

For the purpose of severe weather forecasting, veri-

fication efforts must consider the convective mode of

model storms (e.g., Gallus et al. 2008; Duda and Gallus

2010; Smith et al. 2012; Pettet and Johnson 2003), which

has typically been evaluated subjectively (e.g., Carlberg

et al. 2018). An alternative method of object-based en-

semble probabilistic forecasting was introduced in

Johnson andWang (2012, hereafter JW12). In the JW12

approach, an ensemble control member is treated as a

deterministic forecast within which each storm object is

assigned a probability of occurring based on the simi-

larity of objects in the other ensemble members. An

advantage of this approach is that the probabilistic in-

formation content of the CAM ensemble can be ob-

jectively quantified in a way that mimics subjective

evaluations based on the relevant features used by se-

vere weather forecasters, such as storm mode and or-

ganization. The JW12 approach provides an additional

perspective that ensemble verification research can use

to identify CAM ensemble configuration optimizations

that are most likely to directly translate into improved

operational severe weather forecasts for the public. A

second advantage of this approach from JW12 is that

the object-based probabilistic forecast can quickly

summarize information that would otherwise be ob-

tained only by manually examining each available en-

semble member. Such manual examination could be

prohibitively time consuming in an operational setting,

especially during rapidly evolving situations and when

many CAM ensembles are available to the forecaster.

Thus, the probabilistic object-based forecasts may also

allow forecasters to better utilize existing numerical

guidance.

Despite the apparent advantages of object-based

probabilistic forecasts for evaluating ensemble guid-

ance for severe weather, there has been limited ability

to generalize broadly from previous object-based ver-

ification studies. One limitation is that object-based

verification has typically relied on a large number of

user-defined and tunable parameters within the object

matching steps. For example, Davis et al. (2009) and

Johnson and Wang (2013) both used piecewise linear

functions for the similarity of each object attribute, as

well as a weight and confidence value for combining ob-

ject attribute similarities into an overall quantification of

object similarity that was referred to as ‘‘total interest.’’
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This limitation is addressed in the present study by

simplifying the object matching procedure in a way that

maintains the method’s flexibility to suit different users’

needs while reducing the tunable object matching pa-

rameters to just 3 key values with clear physical inter-

pretations of storm spatial scale (object area), storm

mode (e.g., linear versus cellular; aspect ratio), and lo-

cation (centroid location). A second limitation of sev-

eral past object-based verification studies, in terms of

generalizing past work to the context of severe convec-

tive weather prediction, is a reliance on a single model

variable to define and match objects. For example, in

Johnson and Wang (2013), a threshold was applied to

precipitation fields to identify objects and the object’s

attributes were defined in terms of the size, shape, and

location of those precipitation objects. From a severe

weather forecasting perspective, consideration of the

relationships between variables (e.g., whether a par-

ticular reflectivity object is producing severe wind or

hail or both) can be just as important as consider-

ation of each variable in isolation. Although for some

applications additional levels of complexity may be

worthwhile (e.g., object merging as in Davis et al.

2009), in the present study objects are identified using

composite reflectivity while other relevant variables

are also used as object attributes that allow for em-

phasis on storms representing specific severe weather

hazards.

The Storm Prediction Center (SPC) and National

Severe Storms Laboratory (NSSL) host an annual

Spring Forecasting Experiment (SFE) in the Hazardous

Weather Testbed (HWT) to use and evaluate innovative

severe weather forecasting technologies and techniques

(Clark et al. 2012b;, 2018; Gallo et al. 2017, 2018). During

the 2017 and 2018 SFEs the University of Oklahoma

Multiscale data Assimilation and Predictability (MAP)

laboratory contributed a real time CAM ensemble ini-

tialized by an ensemble of analyses produced by the

coupling of theGSI-based ensemble–variational (EnVar)

and ensemble Kalman filter (EnKF) hybrid data as-

similation (DA) system. Compared to other GSI-based

EnVar hybrid systems applied to meso- or convective

scales (e.g., Schwartz and Liu 2014; Hu et al. 2017), this

hybrid DA system assimilates observations resolving a

variety of scales including the capability of direct as-

similation of both the radar radial velocity and radar

reflectivity (Johnson et al. 2015; Wang and Wang 2017).

More details of the system adopted by the MAP labo-

ratory can be found inDuda et al. (2019) andWang et al.

(2019, manuscript submitted to Wea. Forecasting).

Starting in 2018, the system also included an object-

based probabilistic forecast interface, which was used

and evaluated during the daily simulated operational

forecasting activities in the HWT. This study therefore

focuses on precipitation and other forecast variables

related to severe weather that are of interest to SPC and

HWT forecasters.

The purpose of this paper is to further develop the

probabilistic object-based ensemble verification method

of JW12 with an emphasis on contrasting the interpre-

tation of the object-based and neighborhood-based

probabilistic framework, then document the perfor-

mance of the 2018 OU MAP ensemble forecasts dur-

ing HWT using both neighborhood and object-based

methods. The object-based method and parameters

are developed and demonstrated using independent

data from the 2017 OU MAP ensemble forecasts. Since

several of the most high-impact cases from 2017 were

used to develop the method and choose the object

identification and matching parameters, only the 2018

data is used for the systematic verification to avoid

overfitting the verification method to our subjective

evaluations on 2017 cases.

The organization of the paper is as follows. The

design of the ensemble DA and forecast system are

presented in section 2. In section 3, we further de-

velop the object-based probabilistic forecast frame-

work of JW12 to better represent the distribution of

convective storm morphologies in an ensemble fore-

cast. The object-based, and a neighborhood-based,

evaluation are then contrasted for a case study in

section 4 in order to highlight the different aspects of

forecast performance that each is sensitive to. Finally,

the performance of the OU MAP ensemble during

the 2018 HWT is then documented in section 5 using

both the object and neighborhood-based frameworks.

Section 6 contains the summary and conclusions.

2. Ensemble forecast and DA system

A similar strategy of DA and ensemble forecast for

producing the OUMAP ensemble was adopted during

the 2017 and 2018 HWT SFEs. Cycled WRF fore-

casts and 3D-EnVar DA were conducted from 1800 to

0000 UTC each day, with the first DA update occur-

ring at 1900 UTC after a 1-h ensemble forecast, ini-

tialized at 1800 UTC. A GSI-based hybrid EnVar DA

system interfaced with the Advanced Research ver-

sion of the Weather Research and Forecasting (WRF-

ARW; Skamarock et al. 2008) Model was employed to

assimilate all conventional observations in the oper-

ational prepbufr stream, except for precipitable water

(i.e., METARs, shipborne, buoy, aircraft, radiosonde,

profiler), hourly from 1900 to 0000 UTC. This GSI-

based hybrid DA system has also been further de-

veloped with the capability to directly assimilate radar
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radial velocity and reflectivity (Johnson et al. 2015;

Wang andWang 2017). The GSI EnVar hybrid solvers

for the system are described inWang (2010). The same

GSI EnVar method is used for the global system (e.g.,

Wang et al. 2013) and regional system (e.g., Schwartz

and Liu 2014; Lu et al. 2017a, b; Hu et al. 2017). Radar

data are here assimilated every 20min during the

2300–0000 UTC period. The system produces 41 dis-

tinct analyses, consisting of one analysis from the

EnVar component of the hybrid DA system, and

40 perturbed member analyses from the ensemble

square root filter (EnSRF) component. The GFS de-

terministic analysis and subsequent forecast were

used to provide the initial conditions and lateral

boundary conditions (ICs/LBCs) for the EnVar de-

terministic forecast. The ICs/LBCs for the 40-member

ensemble forecasts were produced by adding to the

GFS deterministic analysis 40 perturbations, which

were extracted from the Global Ensemble Forecast

System (GEFS) and the Short-Range Ensemble Forecast

(SREF) of the National Centers for Environmental

Prediction (NCEP). TheGEFS/SREF perturbations are

added to the deterministic GFS analysis at 1800 UTC,

before running the first set of background forecasts.

After each EnVarDA cycle, and before theDAbegins,

the analyzed perturbations were recentered around the

EnVar analysis to reset the EnKF ensemble around

the EnVar analysis. The recentering procedure con-

sists of replacing each member’s analysis with its dif-

ference from the ensemble mean analysis, added to

the EnVar analysis. Beginning at 0000 UTC, a 36-h,

10-member ensemble forecast was initialized using

the final analysis from the EnVar and the first 9 EnKF

members.

The forecast domain approximately covers the con-

tiguous United States (Fig. 1) using a 3-km grid and

was advanced between DA cycles and during the free

forecast using different models in 2017 and 2018 HWT.

The Nonhydrostatic Multiscale Model on the B grid

(NMMB; Janjić 2004) was used in 2017 and the WRF

ARW was used in 2018. All members in each year

adopted their own same physics parameterizations.

Different models were used because the 2017 HWT

ensemble was intended to evaluate developments

for the NMMB-based North American Model Rapid

Refresh (NAMRR), while the 2018 HWT ensemble

was intended to evaluate developments for the ARW-

based High-Resolution Rapid Refresh (HRRE). The

NMMB in 2017 used Ferrier–Aligo microphysics

(Aligo et al. 2018), the Mellor–Yamada–Janjić (MYJ;

Janjić 2002) planetary boundary layer (PBL) scheme,

and the Noah land surface model (LSM, Mitchell

et al. 2005). The physics schemes in 2018 forWRF-ARW

were Thompson microphysics (Thompson et al. 2004,

2008), theMellor–Yamada–Nakanishi–Niino (MYNN;

Nakanishi and Niino 2004, 2006) PBL scheme, and

the Noah LSM (Mitchell et al. 2005). A web-based

interface to OBPROB (and other) products from

the OU MAP ensemble is provided to HWT partic-

ipants in real time during the Spring Forecasting

FIG. 1. Computational domain overlaid with daily verification domains for early (blue) and

late (red) lead times. Formany cases the red box for one day is exactly on top of the blue box for

the next day. The domains differ in cases where there was a day in between forecast cases

without a forecast being run (i.e., weekends).
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Experiments (e.g., http://weather.ou.edu/;map/dev/

obprob_2019.php).

3. Description of the OBPROB forecast method

Before describing the object-based probabilistic

(OBPROB) method in detail, it is necessary to dis-

tinguish the object-based framework from the gridpoint-

based framework that many readers will be more

familiar with. In a gridpoint framework, the model

forecast represents a set of boxes that are spatially

distributed in a predictable manner (i.e., on a regular

grid, usually) and each grid point in this set contains

values with some physical interpretation (e.g., the av-

erage temperature within the grid box, the average u

component of wind within the grid box, etc.). In the

object-based framework the model forecast represents a

set of objects (i.e., convective systems in our case) that is

different in each forecast, unlike the set of grid boxes

which represent the same thing in every forecast. Each

object in this set also contains values with some physical

interpretation (e.g., the size of the object, the location of

the object, the intensity of the object based on some

metric, etc.). It has been argued above that a key ad-

vantage of CAMs over coarser resolutionmodels is their

ability to be subjectively interpreted in terms of how

they represent distinct meteorological features (i.e.,

objects), regardless of exactly which grid box they fall

into. While the completely different framework for

discretizing the forecast atmospheric states creates some

challenges from an objective verification perspective, it

also creates an opportunity to evaluate aspects of CAM

ensemble forecasts that are important to users but not

necessarily easily verified in the traditional gridpoint-

based framework, even when using a neighborhood

approach.

a. Object definition

Objects in this study are identified in a similar way as

done previously with the Method for Object-based

Diagnostic Evaluation (MODE; Davis et al. 2006a)

tool. After applying a Gaussian convolution with a 6-km

(2 grid point) radius to the composite reflectivity field, a

threshold of 35 dBZ is applied to identify a set of dis-

crete objects. The two gridpoint convolution radius is

much smaller than previous studies focused on meso-

scale precipitation (e.g., Davis et al. 2006a; Johnson et al.

2011a). The smaller radius is intended to minimize

gridscale noise while retaining the resolved and partially

resolved convective-scale features. Objects with an area

less than 42 grid points are then omitted in order to focus

only on robust, established convection. This value is

chosen based on the effective model resolution of about

seven grid points (Skamarock 2004). The minimum ob-

ject area is slightly larger than the area of a hypothetical

circular object with a diameter right at the effective

resolution of 7 grid points. The area of this hypothetical

object would be 38.5 grid points. Attributes related to

the size, shape, and location of these objects are then

calculated. Additional nonreflectivity variables are also

included as object attributes. These variables include

the average of the within-object 90th–100th percentile of

2–5-km hourly maximum updraft helicity as a measure

of storm rotation, hourly maximum 10-m wind speed

as a measure of straight-line wind severity, hourly ac-

cumulated precipitation as a measure of flash flooding

potential, and column/hourly maximum hail size. Hail

size is quantified differently for forecasts and observa-

tions because the forecast data that were saved from the

real time forecasts do not have an exactly analogous

observation dataset. For forecasts, hail size is diagnosed

directly by the WRF Thompson microphysics scheme.

For observations, hail size is calculated using the

Maximum Expected Size of Hail (MESH; Smith et al.

2016) algorithm.

In this study, the additional nonreflectivity attributes

are used to limit consideration to objects meeting cri-

teria related to specific severe weather hazards. The

forecaster is then able to either focus only on storm

mode by ignoring these additional attributes or further

limit the focus to storms producing specific hazards

such as large hail or strong rotation by omitting from

consideration all objects that fail to meet a threshold

value of the corresponding attribute. Thus, these mul-

tivariable ‘‘intensity’’ attributes are used to limit con-

sideration to storm objects that are intense enough to

represent a specific severe weather threat during the

object-identification, rather than in the object-matching

procedure.

b. Object matching

The large number of subjectively determined pa-

rameter values that must be specified has arguably

limited the broader acceptance of, and generalization

from, many object-based postprocessing and verifica-

tion studies (e.g., as noted in Skinner et al. 2016). The

object matching procedure in this study is loosely based

on our earlier work, but with a greater emphasis on

simplicity. In particular, object matching in many pre-

vious studies (e.g., Davis et al. 2009; JW12) was based

on a total interest (i.e., overall object similarity) value

determined from the weighted average of the objects’

similarity in terms of each attribute. In the commonly

used MODE utility, a piecewise linear similarity func-

tion is defined for each attribute and the user specifies a

weight and confidence value for each similarity function
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(e.g., Davis et al. 2009). The purpose of the confidence

values is to change the weight given to certain attributes

depending on the similarity of other attributes. For ex-

ample, if two objects are spatially very far apart then the

weight given to the similarity of their area is reduced

because it could already be inferred that they do not

correspond to each other so having a similar area is

meaningless (JW12). Here, the piecewise linear simi-

larity functions of MODE are replaced by the Gaspari

and Cohn (1999) function that is commonly used in DA

and can be defined in terms of a single e-folding distance.

The Gaspari and Cohn function is approximated using

Eq. (4.10) of Gaspari and Cohn (1999), which is ap-

proximately Gaussian in shape, but goes exactly to zero

at a specified distance. Furthermore, the weighted av-

erage is here replaced with a simple product of each

attribute’s similarity between the two objects being

compared:

I5 f
a1
3 f

a2
3 f

a3
. (1)

In Eq. (1), I is the total interest between the two objects

and fai is the similarity (or interest) between the two

objects only in terms of attribute i. The three attributes

used for matching are centroid distance, area ratio, and

aspect ratio difference (Fig. 2). Based on subjective

evaluations of the first two authors, as well as forecaster

feedback during the HWT SFE, e-folding scales for the

similarity functions are set to 200km, 0.33 (technically,

encoded as 1.0–0.33 since greater area ratio means more

similarity not more error, unlike centroid distance or

aspect ratio difference), and 0.2, respectively. The sen-

sitivity of the systematic verification to changing these

values is discussed further in section 6. While MODE is

not the only option for object-based verification, and

even simpler matching criteria have also been used, we

emphasize here the importance of keeping some of the

flexibility of more complex methods while still main-

taining as much simplicity as possible.

Equation (1) obviates the need for the confidence

values and weights that were used in previous studies. In

this study, we interpret the ‘‘weight’’ on a particular

attribute to be effectively increased (decreased) by

simply increasing (decreasing) the e-folding distance of

the interest function for that attribute. When total in-

terest is a product, rather than an average, the confi-

dence values are unnecessary because any attribute that

has near-zero similarity will cause the total interest to

also be near zero. We note that Skinner et al. (2016) also

combined multiplicative and additive components of a

total interest by including a product of centroid distance

interest and temporal distance interest in the average.

Objects are considered a match if their total interest is at

least 0.2. We found this threshold to correspond well to

subjective determinations of matched and unmatched

objects in the test cases from the 2017 dataset.

FIG. 2. Interest functions to compare a pair of objects in terms of their (a) centroid distance,

(b) area ratio, and (c) aspect ratio difference. Vertical black lines are placed at the e-folding

distance.

174 WEATHER AND FORECAST ING VOLUME 35

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/35/1/169/4918191/w

af-d-19-0060_1.pdf by N
O

AA C
entral Library user on 11 August 2020



c. Object probabilities

JW12 proposed a probabilistic approach to object-

based forecasting that is appropriate for ensemble

forecast verification. In short, the approach consisted of

considering one ensemble member as the ‘‘control’’

forecast, which theoretically should be the most likely

forecast. Probabilities are then assigned to each object in

the control forecast based on how many of the other

ensemble members are forecasting a sufficiently similar

object to be considered a match. Therefore, control

forecast storms that are similar to storms in most other

ensemble members have high probability to occur and

outlier storms in the control member have low proba-

bility to occur. In the OU MAP multiscale hybrid DA

and ensemble forecast system, the forecast initialized

from the EnVar analysis is expected to have lower

analysis and forecast errors than the other ensemble

members on average (Wang and Wang 2017; Wang

et al. 2019, manuscript submitted to Wea. Forecasting)

making it the obvious candidate for the object-based

control member.

One issue with this approach is that the predefined

control member may not be the most representative of

the center of the ensemble distribution for any given

forecast, regardless of the average behavior over many

cases. Also, the method may not easily generalize to

ensembles with equally likely members. Therefore,

we now consider some other alternative approaches.

Another option would be to use the object-based threat

score (OTS; Johnson et al. 2011a) to identify the case

dependent ‘‘representative’’ member. This is done here

by finding the member with the largest average OTS in

comparison to all other ensemble members, where the

OTS measures overall similarity between two ensemble

members i and j as follows:

OTS
ij
5

1

A
i
1A

j

"
�
P

p51

Ip(api 1 apj )

#
. (2)

In Eq. (2), A is the total area of all objects from that

member, P is the number of paired objects, Ip is the total

interest [i.e., similarity; Eq. (1)] for the the pth pair of

objects, and ai and aj are the areas of the pth pair of

objects. Following Johnson et al. (2011a), objects are

paired iteratively by first pairing the two objects with

greatest total interest, then removing the paired objects

from consideration and resorting the list of all potential

pairings based on total interest until one of the members

runs out of objects. The representative member is taken

as the member with the greatest value of OTS when its

OTS relative to all other ensemblemembers is averaged.

Other methods of choosing a representative member,

such as the member closest to the ensemble mean

(Schwartz et al. 2014), have also been considered.

However, quantifying differences between members

depends on the spatial scales and features of interest

(e.g., Dey et al. 2014). Our past work with OTS suggests

that it is suitable for quantifying the similarity of CAM

ensemble members in a way that mimics subjective

comparisons (Johnson et al. 2011a).

The ‘‘representative’’ member is intended to repre-

sent the center of the ensemble distribution and should

therefore be more skillful than any other member over

the entire domain when averaged over enough forecasts

in an unbiased ensemble, but even then may locally

still not be the member that is most representative of

the ensemble distribution for a particular convective

system. Therefore, a third option is also introduced

by taking the objects from all ensemble members and

constructing a hypothetical ensemble pseudomember

using the objects that are locally most representative of

the ensemble distribution. These objects are obtained

according to the following steps:

1) Make a list of all objects in the forecast ensemble,

together with the objects’ probabilities, calculated

from the percentage of ensemble members with a

matching (i.e., total interest . 0.2) object.

2) Sort all of the objects by probability, breaking ties

according to the average total interestwith all theobjects

from other ensemble members that it matched to.

3) Add the highest probability object to the object list of

the pseudomember.

4) Remove from consideration the added object, as well

as all matching objects in other members that con-

tributed to the probability of the added object,

leaving a new, smaller list of objects.

5) Repeat from step 2 until no objects remain in the list

of ensemble forecast objects.

When plotted, the result of this process is conceptually

similar to ensemble ‘‘paintball’’ plots that HWT fore-

casters are accustomed to using to summarize CAM

ensemble forecasts (e.g., Roberts et al. (2019). In the

paintball plot a threshold is applied to a field such as

composite reflectivity (i.e., a rudimentary object iden-

tification), and the resulting objects are all overlaid on

the same plot with a different color for each ensemble

member.

In the pseudomember object-based probabilistic fore-

cast, all objects in the ensemble are also represented on

the same plot. However, the clutter of the plot is reduced

compared to a paintball plot, which facilitates inter-

pretation. This is becausemany objects contribute to the

plot by increasing the probability of a similar object that

is already plotted, rather than being explicitly overlaid.

FEBRUARY 2020 JOHNSON ET AL . 175

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/35/1/169/4918191/w

af-d-19-0060_1.pdf by N
O

AA C
entral Library user on 11 August 2020



Since the objects now have an associated probability,

care must be taken when interpreting what exactly they

represent a probability of. Simply stated, they reflect the

probability that the convective system represented by

the plotted object will occur. The matching procedures

described above are used to quantify whether the rep-

resented convective system indeed occurs. Specifically,

matching to observation objects occurs when the plotted

object and the observation object have a total interest

greater than 0.2. In the remainder of this paper, the

object-based probabilistic forecasting method using the

pseudomember objects is abbreviated as OBPROB.

The steps 1–5 above, and the interpretation of the

resulting probabilistic forecast is conceptually illus-

trated in Fig. 3. In Fig. 3 we consider a simplified ex-

ample of a 4-member ensemble with forecast objects

labeled as A, B, C, D, and E. For illustration purposes,

we assume that objects appearing to have the same

shape, size, or location have an interest value of 1.0 for

that attribute, while objects appearing to have different

shape, size, or location have an interest value of 0.333 for

that attribute. The overall similarity [i.e., total interest,

Eq. (1)] between any two objects is the product of the

interest value for each of shape, size, and location. So,

the total interest between objects A and B, IAB 5
Ilocation 3 Ishape 3 Isize, is 1.0 3 0.33 3 0.33 5 0.11 be-

cause they have the same centroid location but different

shape and size. Similarly, the total interest between

objects A and C is 0.333 13 15 0.33 because they have

the same shape and size but different location. Table 1

shows the Total Interest between all pairs of objects

from different ensemble members in this example. If we

use a matching threshold of 0.2, we find that there are

three of the four ensemble members with an object

matching object A (including itself). Object A is there-

fore interpreted as representing a convective system

with a 75% chance of occurring. The probability of oc-

currence, and average similarity to matched objects, for

each object is summarized in Table 2. There are three

objects (A, C, and D) with 75% probability, so we use

the average similarity tomatched objects to break the tie

and select either object A or D (since they are exactly

identical in this simple example, it doesn’t matter which

one we choose) to first add to the final OBPROB plot.

After plotting the orange object (object A) with 75%

probability in Fig. 3 and removing object A and the

objects that it was matched to (objects C and D) from

consideration, we recalculate the total interests among

the two remaining objects B and E. Since these objects

FIG. 3. Illustrative example of the procedure of generating the OBPROB forecast. (top) Hypothetical objects

within a 4-member ensemble forecast. (bottom) The resulting OBPROB forecast.

TABLE 1. Total interest values among the objects A through E

from Fig. 3. Duplicate entries are blacked out from the table. Here

‘‘N/A’’ is used to indicate a comparison between objects in the

same ensemble member forecast, which are not calculated. Total

interest values between ‘‘matched’’ objects are highlighted with

bold font.

Object A Object B Object C Object D Object E

Object A 1.0
Object B 0.11 1.0

Object C 0.33 N/A 1.0

Object D 1.0 0.11 0.33 1.0
Object E 0.11 1.0 0.0 0.11 1.0
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are identical, they perfectly match each other but do not

match any remaining object in the other two ensemble

members, so we choose one of them to add to the

OBPROB plot with a 50% probability (Fig. 3).

The interpretation of the OBPROB product in this

contrived example is that there is a 75% probability of

a large elliptical object to occur, and its most likely

location is indicated by the plotted orange object.

Independently, there is also a 50% probability of a

much smaller, circular object to occur, and its most

likely location also happens to be the same as the most

likely location of the orange object. This outcome

illustrates a potential source of confusion in qualitative

interpretation of the OBPROB forecasts. A naïve in-

terpretation of this OBPROB plot would be that the

total probability of one of these two storm types oc-

curring at this location is greater than 100%. However, a

more complete consideration of how the probabilities

are generated would focus on the probability of specific

convective morphologies to occur, rather than focusing

on the probability of convection in terms of the exact

location of the object. In particular, it should be noted

that (i) there are some scenarios (i.e., member 002)

where both objects will occur, and (ii) spatial location is

just one of three equally weighted attributes of the

plotted objects, which have minimal ‘‘overlap’’ in their

sizes and shapes.

While we acknowledge this subjective limitation that

the OBPROB plots are interpreted differently than how

forecasters are accustomed to interpreting probability

map plots, this approach has the strength of representing

the full ensemble forecast distribution, while also elim-

inating issues related to choosing a ‘‘control’’ member.

This is important because, as suggested by Schwartz

et al. (2014), it has yet to be definitively shown that

a case dependent best-guess member can be chosen a

priori to provide better systematic performance than a

randomly chosen member. Furthermore, verification of

the OBPROB forecasts can quantitively evaluate how

well the ensemble distribution of storm morphologies

represents the uncertainty in the storm morphology

forecast. Further discussion of how the object-based

probabilities might be differently displayed for the

purpose of operational forecasting applications is con-

tinued in section 6.

4. Demonstration of OBPROB using 27–28 May
2017 case study

Case studies from 2017 were used to subjectively

identify suitable object identification and objectmatching

parameters for the object-based probabilistic verification

applied to severe weather hazard prediction. The details

of the method are demonstrated in this section using a

representative case study from the severe weather out-

break taking place in the southernGreat Plains at;0000–

0600 UTC 28 May 2017. The observed radar reflectivity

mosaic at 0000 UTC shows convection initiating in

southern Oklahoma, as well as multicellular convec-

tion with a loosely linear organization in northeastern

Oklahoma (Fig. 4a). InOklahoma, multicell clusters start

to form within 1–3h (Figs. 4b–d), growing upscale into a

more linear system at ;0400 UTC (Fig. 4e). A south-

eastward propagating storm also emerged from convec-

tion in southeastern Colorado and moved into northern

Oklahoma (Figs. 4c–f). This case study is investigated

over the limited domain shown in Fig. 4 for ease of in-

terpretation. First, we use this case study to demonstrate

the application of OBPROB and qualitatively compare

the quantitative information that it provides about the

ensemble forecast performance to a neighborhood-based

approach. In particular, we emphasize that, unlike the

NMEP forecasts, the OBPROB forecasts are especially

sensitive to convective system morphology.

a. Subjective evaluation

The 10-member ensemble forecast of composite reflec-

tivity for the ensemble forecast initialized at 0000 UTC

27 May 2017, and valid 30 h later at 0600 UTC 28 May

2017, is shown in Fig. 5. Also shown in Fig. 5 are two

common methods of summarizing ensemble forecasts in

an operational setting, a paintball plot and a neighbor-

hoodmaximum ensemble probability (NMEP; Schwartz

and Sobash 2017; Roberts et al. 2019) plot. For NMEP,

we here use a 40-km neighborhood, selected based on

the 40-km radius used by SPC in probabilistic outlooks.

Since NMEP can result in abrupt discontinuities in the

probability field, a Gaussian spatial convolution with a

sigma value of 40 km is also applied to the final NMEP

probability fields. Manual examination of the individual

ensemblemember forecasts reveals that all members are

predicting convection in eastern Oklahoma at this time.

Many of the members are also predicting a linear east–

west-oriented mesoscale organization of the convection

(Figs. 5a–j). The paintball plot (Fig. 5k) summarizes this

information in a single figure, making it a useful product

TABLE 2. Object probability and average total interest to matched

objects, for objects A through E from Table 1.

Object Probability Avg total interest to matched objects

A 75% 0.777

B 50% 1.0

C 75% 0.556

D 75% 0.777

E 50% 1.0
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for an operational severe weather forecaster. However,

the multiple overlapping objects make it difficult to pick

out specific predicted storms or to quantify the proba-

bility of specific storm modes or attributes. The NMEP

(Fig. 5l) provides a more quantitative probabilistic

forecast, but because of the use of a mesoscale neigh-

borhood radius the convective-scale details that fore-

casters often wish to obtain from CAM ensembles are

lost, demonstrating the need for the OBPROB method.

The OBPROB forecasts at the 30-h lead time using

the three differentmethods of choosing the object-based

control member are shown in Fig. 6. The EnVar analysis

member (Fig. 6a) is clearly not representative of the

ensemble distribution of storm modes and types of or-

ganization that are subjectively seen in Fig. 5 for this

case. Although the plotted object correctly portrays our

inference from the ensemble members that it has a low

probability of occurring, information about the storms

that are more likely to occur is missing from such a

plot. The ensemble representative member based on

Eq. (2) (Fig. 6b) shows a storm object that is consistent

with how a forecaster might interpret the most likely

convective organization given the ensemble forecast

in Fig. 5, with a probability of occurring objectively

quantified at 50%. This object is also qualitatively similar

to the observation objects described below in Fig. 8d.

However, this product is also incomplete because a

forecaster would likely still want to know about other less

probable outcomes in this region or the most probable

outcome in a completely different region of the forecast

domain which is not well shown by this same member

(not shown). Only the pseudomember method quantifies

the most likely linear mesoscale organization, as well as

the less likely cellular modes and the low-probability

disorganized cluster of convection closer to central

Oklahoma (Fig. 6c). Therefore, the pseudomember

method is used for calculating objective verification

statistics in this study.

The data used for verification consists of Multi-

Radar Multi-Sensor (MRMS) data. MRMS blends

single quality controlled and processed WSR-88D data

into a suite of seamless CONUS-wide products. MRMS

data are output every 2min over a CONUS domain

with 0.018 horizontal resolution (;1 km) for MESH

and composite reflectivity and at a 0.0058 horizonal
resolution (;500m) for azimuthal shear (AzShear).

FIG. 4. MRMS composite reflectivity for 28 May 2017 at (a) 0000, (b) 0100, (c) 0200, (d) 0300, (e) 0400, (f) 0500, and (g) 0600 UTC.

The 35-dBZ contour is highlighted in black.
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See Smith et al.(2016) and Zhang et al. (2016) and ref-

erences therein for details on the MRMS operational

system. AzShear is computed using a linear least squares

derivative that is taken on the quality controlled velocity

field and the azimuthal gradient represents the rotation

in the field (Mahalik et al. 2019). For this project,

AzShear data was reprocessed to use the updated version

of the AzShear code for better consistency and results

across the dates of this study. Accumulated precipitation

forecasts were verified against the gauge-corrected radar

quantitative precipitation estimates fromMRMS (Qi and

Martinaitis 2016; Zhang et al. 2016).

b. Objective evaluation

The Brier score (BS; Brier 1950) and Brier skill scores

(BSS; Wilks 2006) are calculated for this case at forecast

hours 24–30 (i.e., 0000UTC 28May–0600UTC 28May).

For OBPROB BS, observation objects that are not

FIG. 5. Ensemble forecast initialized at 0000 UTC 27 May 2017 and valid at 0600 UTC 28 May. (a)–(j) The 10 member ensemble of

composite reflectivity with object outlines contoured in black (member 1 is the EnVar member). Also shown are (k) the corresponding

paintball plot and (l) the corresponding neighborhood maximum ensemble probability (using a 40-km search radius and 40-km Gaussian

smoothing) plot for a 35-dBZ threshold. The different colors of objects in (k) indicate that the objects are from different ensemble

members. The black line in (l) is the 35-dBZ observation reflectivity contour.
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matched to any of the probabilistic forecast objects are

taken to have been forecast with 0% probability. Unlike

the gridpoint-based framework, the OBPROB method

does not otherwise produce 0% probabilities so there

are no ‘‘correct null’’ events contributing to the BS. This

is advantageous because the OBPROB BS is not sensi-

tive to large regions of correct null forecast on some

cases, which would lower the BS, artificially appearing

to be a particularly skillful forecast. In the neighborhood

framework, the correct nulls are controlled for by

defining a reference BS and presenting the BSS with

respect to that reference forecast. Here, the reference

forecast is the domain average observation event (e.g.,

reflectivity threshold exceedance) frequency. For the

object-based framework, it is not clear what reference

forecast should be used, so we plot the BSS with respect

to a worst possible reference BS of 1.0. The use of a

worst possible forecast as the reference score follows the

approach in the commonly used fractions skill score of

Roberts and Lean (2008). Due to the lack of correct null

forecasts in the OBPROB context, the result should not

be very sensitive to the choice of reference BS. While

theNMEP performance decreases during this 6-h period

(Fig. 7; thick green line), the OBPROB performance

increases at the end of the 6-h period compared to the

beginning of the period (Fig. 7; blue line). The general

trend of decreasing performance later in the forecast

period for NMEP is also seen in the BS without regard

to a reference BS (Fig. 7; thin green line).

The cause of the different relative performance be-

tween forecast hours 24 and 30 for OBPROB and

NMEP for this case are illustrated in Fig. 8. The NMEP

forecast at the 24-h lead time (i.e., 0000 UTC 28 May)

shows a lot of overlap between the areas of high

neighborhood probability and observed reflectivity, as

well as large areas of high probability far (i.e., .40km)

from areas of observed precipitation (Fig. 8a).At forecast

hour 30 (0600 UTC), the area of high probability is fo-

cused too far north and east and there are observed

precipitation areas where there was near-zero proba-

bility forecast (Fig. 8d). The subjective evaluation is

consistent with the slightly worse objective performance

of the NMEP forecast in Fig. 7 at forecast hour 30. In

contrast, the OBPROB forecast at the 24-h lead time

(Fig. 8b) correctly indicates a high (70%) probability

of a storm in southern Oklahoma, but also incorrectly

indicates an even higher (90%) probability of a very

linear storm in northeastern Oklahoma. The forecast

also indicates a moderate probability (50%) of cellu-

lar convection in north Texas that did not materialize in

the observations. At the 30-h lead time (Fig. 8e), the

OBPROB forecast correctly predicts that convection in

southeastern Oklahoma is most likely to have grown

upscale and have an east–west linear orientation. Thus,

when evaluating the ensemble forecast in terms of

storm morphology and organization, the trend in the

FIG. 6. ExampleOBPROB forecast for the ensemble forecast shown in Fig. 5 using three differentmethods of selecting which objects to

assign probabilities to, including (a) the ensemble control member, (b) the ensemble representative member, and (c) the combined

pseudomember. Panel (a) corresponds to member 1 in Fig. 5 and (b) corresponds to member 8 in Fig. 5. The corresponding observation

objects can be found in Fig. 8f.

FIG. 7. Brier skill score of NMEP (green) and Brier score of

OBPROB (blue) during forecast hours 24–30 of the 27–28 May

2017 case study.
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OBPROB verification metric in Fig. 7 is more consistent

with a subjective evaluation than the trend in the NMEP

verification metric. This case study emphasizes that the

NMEP and OBPROB verification frameworks provide

distinct and useful diagnostic information about the

performance of CAM ensemble forecast performance.

Thus, neither framework can alone provide a complete

objective evaluation of a CAM ensemble system.

The OBPROB technique can also make use of the

multivariable storm attributes to focus on probabilities of

specific types of storms, such as those producing high rain

rates (here, 25.4mmh21), strong updraft rotation (here,

2–5-kmUHexceeding 100m2 s22), or strong surfacewind

speeds (here, 20ms21) (e.g., Fig. 9).1 At 0000 UTC, the

probability of storm objects with strong rotation (Fig. 9b)

is very similar to the overall storm probability (Fig. 8b).

This suggests that the storms at this time in central

Oklahoma are very likely to be supercellular or, in the

case of larger objects representing convective clusters

or MCSs in northeast Oklahoma, containing embedded

supercellular structures. It should be noted that the

OBPROB representation is able to distinguish be-

tween these two possibilities while a simple neighbor-

hood probability of the UH field could not (not shown).

At this time there are also moderate probabilities of

storms with high rain rates and strong surface winds in

central and northeastern Oklahoma (Figs. 9a,c). At

0600 UTC, both heavy precipitation and strong rota-

tion are given a 40% probability of occurring within

an east–west-oriented MCS in southeastern Oklahoma

(Figs. 9d,e), while no strong wind producing storms are

predicted in this area (Fig. 9f). The corresponding ob-

servation proxies (radar derived quantitative precipita-

tion estimate, radar azimuthal shear, and severe wind

reports) are also shown in Fig. 9. The comparison to

observations suggest that the forecast for this case had

much room for improvement in terms of predicting

the occurrence and timing of threats for specific se-

vere weather hazards. For example, while the forecast

probability of objects with strong rotation is much

higher at 0000 UTC (Fig. 9b) than 0600 UTC (Fig. 9e),

the observed values of azimuthal shear in central and

southern Oklahoma are generally higher at 0600 UTC

(Fig. 9k) than 0000 UTC (Fig. 9h). Also, the probability

of strong wind producing forecast storms becomes

nonexistent at 0600UTC (Fig. 9f), but this is actually the

time when the widespread severe wind reports actually

occurred (Fig. 9l).

5. Systematic verification of 2018 OU MAP
ensemble

The OU MAP real time forecast ensembles from

the 2018 HWT SFE are now verified systematically in

FIG. 8. Comparison of ensemble performance at (top) forecast hour 24 and (bottom) forecast hour 30, showing (a),(d) neighborhood

maximum ensemble probability, (b),(e) OBPROB, and (c),(f) observation objects with matched objects shaded red and unmatched

objects shaded blue.

1MESH was not saved as an output variable in the 2017 OU

MAP ensemble.
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the context of both OBPROB and NMEP forecasts.

The systematic verification is conducted over regional

subdomains selected based on expectations of po-

tentially hazardous convective weather by forecasters

at the lead time of interest (Fig. 1). Results are shown

for both early (forecast hours 1–6, corresponding

to 0100–0600 UTC) and late (forecast hours 21–27,

corresponding to 2100–0300 UTC) lead times. These

verification periods emphasize the most convectively

active periods of the diurnal cycle (late afternoon and

evening). The binning of multiple forecast lead times

to be verified together is motivated by the much

FIG. 9. OBPROB forecasts for objects meeting within-object thresholds of different severe weather hazards at (a)–(c) the 24-h

forecast time and (d)–(f) the 30-h forecast time. A threshold of 25.4 mm h21 of hourly accumulated precipitation is used in (a) and

(d), (b) and (e) use 100 m2 s22 of updraft helicity, and (c) and (f) use 20 m s21 of 10-m wind speed. Also shown are (g)–(l) the

observation proxies (quantitative precipitation estimate, azimuthal shear, and severe wind reports, respectively) corresponding to

(a)–(f), with observation object outlines contoured in black. Shown in (g) and (j) is the hourly accumulated quantitative precipitation

estimate (mm h21), (h) and (k) show hourly maximum azimuthal shear (31022 s21), and (i) and (l) show reports of severe [.50 kt

(1 kt ’ 0.51 m s21)] wind within 1 h of the plotted time. Black contours in (g)–(l) are the outlines of the corresponding observation

objects.
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smaller number of objects (order of 10–100) at a given

lead time on a given case, compared to the number of

grid points (order of 10 000–100 000). The forecast

initialization times and verification subdomains are

listed in Table 3 for reference. The object identifica-

tion (convolution radius, reflectivity threshold, mini-

mum object area) and matching (e-folding distance

for object shape, size and location, and total inter-

est threshold) parameters were selected based on

maximizing agreement between objective results and

subjective evaluations in the 2017 case studies, as

described above. These determinations were based on

the ;1 day forecast lead time since this is most con-

sistent with how the ensemble was used in real time

during the HWT SFEs. Given the general expecta-

tion for errors to increase with increasing forecast

lead time, we also apply the OBPROB verifica-

tion to shorter lead time forecasts and compare the

change in skill with lead time in the OBPROB and

NMEP frameworks. This comparison demonstrates

that the OBPROB and NMEP frameworks are indeed

sensitive to different aspects of forecast performance

and are therefore complementary. While a comparison

betweenOBPROB and similar object-based verification

methods may also be of interest, the focus of this

section is to comprehensively (i.e., using both neigh-

borhood- and object-based frameworks) verify the OU

MAP real time ensemble forecasts from the 2018 HWT

SFE using an appropriate neighborhood-based method

(NMEP) and an appropriate object-based method

(OBPROB).

The overall verification statistics are summarized in

Table 4. We select 95% as the confidence level (i.e.,

p value , 0.05) for statistical significance. The NMEP

BSS is calculated for reflectivity, UH, MESH, and

hourly precipitation. The OBPROB BSS is calculated

for all objects (for comparison to reflectivity NMEP),

objects exceeding the UH threshold, objects exceeding

the MESH threshold, and objects exceeding the hourly

precipitation threshold. For OBPROB, there is not a

statistically significant (based on p values calculated

with permutation resampling, following Johnson and

Wang 2012) difference in skill between early and late

lead times, except for UH which actually increases in

skill at the later time. The difference for UH objects is

likely due to a difficulty in spinning up the storm ro-

tation at early lead times. For NMEP, the skill gen-

erally decreases significantly at the later lead time

TABLE 3. List of forecast initialization dates (time is 0000UTC for all forecasts) and corresponding verification subdomain center points

for both early (forecast hour 1–6) and late (forecast hour 21–27) lead times, as well as the width (NX) and height (NY) in grid points of

each subdomain, for the systematic evaluation of the 2018 OU MAP ensemble forecasts.

Initialization

date

‘‘Early’’

center lat

‘‘Early’’

center lon

‘‘Early’’

NX

‘‘Early’’

NY

‘‘Late’’

center lat

‘‘Late’’

center lon

‘‘Late’’

NX

‘‘Late’’

NY

29 Apr 2018 46.018N 109.638W 274 256 46.108N 104.808W 344 216

30 Apr 2018 46.108N 104.808W 344 216 42.418N 97.838W 227 216

1 May 2018 42.418N 97.838W 227 216 39.228N 95.768W 260 288

2 May 2018 39.228N 95.768W 260 288 38.478N 96.338W 277 331

3 May 2018 38.478N 96.478W 277 331 39.608N 94.528W 217 200

4 May 2018 39.608N 94.528W 217 200 42.838N 76.938W 312 304

7 May 2018 45.958N 113.318W 258 263 44.288N 101.598W 258 233

8 May 2018 44.288N 101.598W 258 233 43.618N 94.648W 277 188

9 May 2018 43.618N 94.648W 277 188 40.448N 87.248W 231 288

10 May 2018 40.448N 87.248W 231 288 41.408N 101.498W 317 210

11 May 2018 41.408N 101.498W 317 210 37.018N 100.148W 244 203

14 May 2018 37.208N 98.358W 278 346 36.538N 98.348W 278 296

15 May 2018 36.538N 98.348W 278 296 40.418N 76.678W 257 286

16 May 2018 40.418N 76.678W 257 286 34.338N 100.798W 252 287

17 May 2018 34.338N 100.798W 252 287 43.728N 101.528W 283 315

18 May 2018 43.458N 101.508W 283 315 37.618N 100.058W 300 239

21 May 2018 38.528N 91.678W 166 178 39.668N 84.538W 286 263

22 May 2018 39.668N 84.538W 286 263 40.778N 82.198W 258 241

23 May 2018 40.778N 82.198W 258 241 43.008N 102.738W 222 202

24 May 2018 43.008N 102.738W 222 202 44.268N 97.398W 287 184

25 May 2018 44.268N 97.398W 287 184 34.988N 100.438W 198 228

28 May 2018 42.388N 101.368W 244 359 37.408N 100.668W 249 349

29 May 2018 37.408N 100.668W 249 349 38.098N 98.468W 219 302

30 May 2018 38.098N 98.468W 219 302 36.118N 101.548W 271 168

31 May 2018 36.118N 101.548W 271 168 38.278N 90.658W 249 244

1 Jun 2018 38.278N 90.658W 249 244 44.908N 99.138W 270 318
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compared to the earlier lead time, with the exceptions

of UH and precipitation which have a difference that

is not statistically significant, although the precipita-

tion difference would be significant at the 90% con-

fidence level (Table 4). The stronger dependence of

skill on forecast lead time for NMEP than OBPROB

may suggest that OBPROB is relatively more sensi-

tive to forecast errors that are not growing substan-

tially between the early (1–6 h) and late (21–27 h)

lead times. We speculate that these errors are re-

sulting from biases in the model and/or physics con-

figuration, rather than growing IC errors, because the

convective-scale IC errors saturate on the time scale

of about an hour (Surcel et al. 2015).

Reliability diagrams (Wilks 2006) for the NMEP

forecasts are shown in Fig. 10. In perfectly reliable

forecasts, the forecast probability (horizontal axis)

would always equal the observed relative frequency

(vertical axis). Thus, the diagonal line indicates

perfect reliability, the region above the diagonal

indicates underconfident forecast probabilities and

the region below the diagonal indicates overconfident

forecast probabilities. At the early lead times (Fig. 10a),

reflectivity is the most reliably forecasted variable.

MESH and precipitation are overforecast, while UH is

underforecast. The UH underforecasting is consistent

with the hypothesis that it suffered from a spin up pe-

riod at the early lead times. At later lead times, UH

underforecasting is reduced, reflectivity reliability is a

little worse, and the MESH and precipitation over-

forecasting remains. The large departures of many of

the reliability curves in Fig. 10 from the diagonal

suggest that the OU MAP ensemble performance will

likely benefit from simple calibration techniques, in

addition to tuning of the ensemble physics config-

uration, such as using a multiphysics or stochastic

physics configuration. Such calibration could im-

prove both biases in each member’s forecast of spe-

cific variables as well as deficiencies in ensemble

spread.

Reliability diagrams for OBPROB are shown in

Fig. 11. Similar to NMEP, objects producing large hail

or heavy precipitation are not predicted with partic-

ularly good reliability, further emphasizing a need

for calibration of these variables. While OBPROB

reliability for all objects (black lines) is far from per-

fect, even at early lead times, limiting consideration to

strongly rotating objects (red lines) improves reli-

ability at the early lead times compared to all objects

(Fig. 11). However, the relatively small sample size of

rotating objects at early lead times and high forecast

probabilities (Fig. 11c) limits the ability to general-

ize from this result. receiver operating characteristic

(ROC; Wilks 2006) curves are used to evaluate the

ability of probabilistic forecasts to discriminate de-

partures from the climatological event frequency with

an area under the curve (AUC) of .0.7 a reasonable

discriminator for useful forecasts (Buizza et al. 1999).

For NMEP forecasts at early lead times (Fig. 12a),

precipitation and hail have good discrimination, de-

spite their poor reliability seen above, and reflectivity

has the best discrimination. UH has relatively poor

discrimination at early lead times. At later lead times

(Fig. 12b), the AUC has decreased for reflectivity,

hail, and precipitation while UH discrimination be-

comes closer to the other variables. The AUC values

around 0.7 (Fig. 12 legend) provide further opti-

mism that calibration to improve the reliability of the

NMEP forecasts will lead to improved skill, since the

discrimination is already at an acceptable level. For

OBPROB (Fig. 13), the discrimination is not as good

as for NMEP, especially for all objects (black lines).

The OBPROB discrimination is actually a little better

when only considering objects that have strong rota-

tion (i.e., red line is above black line in both Figs. 13a

and 13b). The poor discrimination of the OBPROB

forecasts suggests that more advanced calibration

methods (e.g., machine learning techniques) may be

needed, since discrimination is more challenging to

improve with simple postprocessing than reliability.

TABLE 4. Overall BSS ofOBPROBandNMEP forecasts at early (first and third rows) and late (second and fourth rows) lead times. For

OBPROB forecasts, the first column corresponds to all reflectivity objects while the second through fourth columns exclude all forecast

and observed objects that do not have a 90th–100th percentile average UH of at least 65m2 s22 (0.005 s21 for observed azimuthal shear),

25.4-mm MESH, or 25.4mmh21 precipitation, respectively. For NMEP forecasts, the columns correspond to forecasts for 35 dBZ,

65m2 s22 (0.005 s21 for observed azimuthal shear), 25.4-mm MESH, or 25.4mmh21 precipitation, respectively. The number in paren-

theses for the ‘‘late’’ scores is the p value of the difference from the corresponding ‘‘early’’ score, based on the permutation resampling

method described in Hamill (1999) and Johnson and Wang (2012).

dBZ UH MESH Precipitation

Early OBPROB 0.708 0.549 0.767 0.771

Late OBPROB 0.687 (0.174) 0.692 (0.004) 0.758 (0.698) 0.788 (0.415)

Early NMEP 0.410 0.015 23.183 0.066

Late NMEP 0.150 (0.001) 20.016 (0.44) 21.919 (0.013) 20.014 (0.087)
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However, the number of cases needed to successfully

train machine learning models with the object attri-

butes may be prohibitively large. We leave this topic

for future work.

6. Summary and conclusions

This paper describes further development of an object-

based probabilistic (OBPROB) ensemble forecasting

and verification framework that was initially proposed

in JW12. There are three main developments to the

OBPROB framework relative to JW12. First, the object

matching procedure has been simplified. Second, mul-

tivariable intensity attributes are used during the object

identification procedure. Third, a pseudomember is

constructed to more fully represent the full ensemble

forecast distribution. The pseudomember is constructed

by calculating a probability for each storm object in the

forecast ensemble and, starting with the most probable

object, only plotting objects that were not already im-

plicitly included through their impact on a previously

plotted object’s probability. A case study demonstrates

that this method can concisely convey the full forecast

ensemble ‘‘envelope,’’ including both themost-probable

convective-scale details of storm mode and associated

severe hazards, with quantified uncertainty, as well as

lower-probability possibilities.

Theobject-matchingwas simplified compared to several

past object-based verification studies, but may still have

some sensitivity to parameter choices. We chose param-

eters in this study based on the subjective correspondence

between the OBPROB products and manual evaluation

of forecast ensembles for several independent case studies

from 2017. Therefore, we have confidence that the results

are representative of how a forecaster would manually

interpret ‘‘matching’’ objects. However, we also show the

sensitivity of these parameter choices in Fig. 14 by re-

peating the OBPROB reliability diagrams using 27

parameter permutations (Table 5). Figure 14 shows

qualitatively similar comparisons among the types of

objects in groups of lines with parameter perturbations

(thin lines in Fig. 14) as were found for the parameter

settings subjectively chosen based on the 2017 case

studies (thick lines in Fig. 14).

FIG. 10. Reliability diagrams of all forecasts from the 2018 HWT period (26 cases) for NMEP forecasts of

precipitation exceeding 25mmh21 (blue), MESH exceeding 25.4mm (green), reflectivity exceeding 35 dBZ

(black), and updraft helicity exceeding 65m2 s22 (red; using 0.005 s21 azimuthal shear as observation proxy) for

(a) early forecast lead times and (b) late forecast lead times. (c),(d) The corresponding frequency of forecasts in

each probability bin (i.e., grid points).
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Comparison to the neighborhood-based NMEP fore-

casts reveals the unique forecast features that OBPROB

verification is most sensitive to. However, we empha-

size that the purpose of the comparison is not to say

one framework is better or worse than the other.

Rather, we see them both as complementary tools that

can be used as part of a comprehensive verification

of convection permitting ensemble forecast systems.

Overall, the OBPROB systematic verification was

much less sensitive to the choice of early (forecast

hours 1–6) or late (forecast hours 21–27) lead times

than the neighborhood maximum ensemble probability

(NMEP). Since OBPROB is designed to be sensitive to

the convective morphology (i.e., shape and size) and

severe weather hazards of objects with approximately

similar locations, we hypothesize that model and/or

physics related biases in these attributes are being re-

flected in the verification metrics. Ongoing future

work will focus on using OBPROB to diagnose and

improve different multimodel and multiphysics en-

semble configurations for severe weather forecasting.

While initial condition errors should also affect the

object-based verification (e.g., through the centroid

distance attribute), features such as location must

only be approximately similar for objects to match in

this study. We speculate that longer lead time (e.g.,

several days) forecasts may be needed for large-scale

IC errors to grow large enough to affect the approxi-

mate similarity of object location. Another reason for

the generally similar forecast performance at early

and late lead times in the OBPROB forecast is likely

the use of;1 day lead time forecasts to tune the object

identification and matching parameters with the 2017

case studies. Users interested in CAM guidance for

warning time-scale guidance (e.g., Skinner et al. 2018)

would likely require much greater precision in shape,

size, and location of individual forecast storms in

order to consider objects to match. Future work

should therefore incorporate lead-time-dependent ob-

ject matching parameters.

Reliability diagrams for both OBPROB and NMEP

forecasts revealed biases that should be corrected with

calibration in future iterations of the OU MAP ensem-

ble forecasts in the HWT SFEs. For OBPROB, the

FIG. 11. Reliability diagrams of all forecasts from the 2018 HWT period (26 cases) for OBPROB forecasts of all

objects (black), objects meeting the precipitation criterion (blue), objects meeting theMESH criterion (green), and

objects meeting the updraft rotation criterion (red; using 0.005 s21 azimuthal shear as observation proxy) for

(a) early forecast lead times and (b) late forecast lead times. (c),(d) The corresponding frequency of forecasts in

each probability bin (i.e., objects).
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ROC diagrams indicated slightly improved discrimina-

tion when focusing on objects with strong rotation or

large hail, compared to using all objects without con-

sideration of associated severe hazards. However, there

is still much room for improvement. Future work will

explore machine learning methods for calibration of the

OBPROB forecasts, based on past success in improving

forecast discrimination with machine learning (e.g.,

Gagne et al. 2014), and the improved discrimination

found in this study when using more than one variable

(e.g., reflectivity and updraft helicity) to generate the

OBPROB forecast.

The forecasts in this study could be described as em-

phasizing the watch to convective outlook time/space

scales, in contrast to the warning time/space scales

emphasized in Skinner et al. (2016). However, we

would expect the underlying technique to apply sim-

ilarly at very short lead times of a few hours or at

longer lead times of 2–3 days, both of which are im-

portant applications of CAM ensemble forecasts for

severe weather, if the object matching parameters are

defined appropriately for the lead time of interest.

Similar methods may also be applicable to larger-

scale systems such as fronts or cyclones at even longer

lead times. It is also worth noting that the objective

evaluation of CAM ensembles, which also resolve

meso- and synoptic scales of motion, could likely

be further improved by also incorporating evalua-

tion methods that have been applied to synoptic-scale

forecasts such as the scenario-based method of Zheng

et al. (2019).

FIG. 13. ROC curves for all forecasts from the 2018 HWT period

(26 cases) for OBPROB forecasts of all objects (black), objects

meeting the precipitation criterion (blue), objects meeting the

MESH criterion (green), and objects meeting the updraft rota-

tion criterion (red; using 0.005 s21 azimuthal shear as observa-

tion proxy) for (a) early forecast lead times and (b) late forecast

lead times.

FIG. 12. ROC curves for all forecasts from the 2018 HWT pe-

riod (26 cases) for NMEP forecasts of precipitation exceeding

25mmhr21 (blue), MESH (green) exceeding 25.4mm, reflectivity

exceeding 35 dBZ (black), and updraft helicity exceeding 65m2 s22

(red; using 0.005 s21 azimuthal shear as observation proxy) for

(a) early forecast lead times and (b) late forecast lead times. The

ROC curves show the probability of detection (POD) vs proba-

bility of false detection (POFD) for a range of probabilities used

to delineate a categorical forecast that the event will or will

not occur.
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Despite the quantitative diagnostic information

provided by verifying the OBPROB forecasts, there

are limitations of the technique in terms of qualita-

tively interpreting the forecast in the operational

forecasting environment. Since the forecast prod-

ucts ultimately provided to the public are more

similar to the gridpoint-based framework, work is

ongoing to further modify the OBPROB technique

to first classify the forecast objects according to pre-

defined storm modes or spatial scales of organiza-

tion, then produce probabilistic plots for a specific

type of convective system that can be interpreted

analogously as an operational convective outlook.

This work is ongoing and will be reported in future

studies.
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